On a Result of Vinogradov and Linnik

نویسنده

  • MEHDI HASSANI
چکیده

In this paper, considering the concept of Universal Multiplication Table, we show that for every n ≥ 2, the inequality: M(n) = #{ij|1 ≤ i, j ≤ n} ≥ n2 N(n2) , holds true with: N(n) = n log 2 log log n ( 1+ 387 200 log log n ) . Then using this fact we show that the value c in the Linnik-Vinogradov’s result; M(n) = O (

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FINITE FIELDS AND APPLICATIONS Characters and character sums (9 lectures)

Exponential sums and character sums have many applications in number theory and combinatorial number theory. Many famous and interesting problems have been studied by means of exponential sums techniques: Goldbach ternary conjecture (Vinogradov), Waring Problem (Hardy, Littlewood, Vaughan, Vinogradov, Wooley), Distribution of prime numbers (Ford, Hardy, Korobov, Linnik,...) as well as many othe...

متن کامل

La gran criba

El nombre apareción en el trabajo fundacional de Yu.V. Linnik en 1941 y posiblemente quedó definitivamente asentado con la publicación en 1974 del libro de E. Bombieri “La gran criba en la teoŕıa anaĺıtica de números” [2]. Proviene de que algunas de estas desigualdades fueron fundamentales para construir métodos de criba que permit́ıan eliminar muchas clases de congruencia. El nombre se debe ent...

متن کامل

A Bombieri-Vinogradov type exponential sum result with applications

We prove a Bombieri-Vinogradov type result for linear exponential sums over primes. Then we apply it to show that, for any irrational α and some θ > 0, there are infinitely many primes p such that p+ 2 has at most two prime factors and ‖αp+ β‖ < p−θ.

متن کامل

An Introduction to the Linnik Problems

This paper is a slightly enlarged version of a series of lectures on the Linnik problems given at the SMS–NATO ASI 2005 Summer School on Equidistribution in Number Theory.

متن کامل

Remarks on the Pólya–Vinogradov inequality

Abstract: We establish a numerically explicit version of the Pólya– Vinogradov inequality for the sum of values of a Dirichlet character on an interval. While the technique of proof is essentially that of Landau from 1918, the result we obtain has better constants than in other numerically explicit versions that have been found more recently.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009